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Wave propagation in a strongly disordered one-dimensional phononic
lattice supporting rotational waves
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We investigate the dynamical properties of a strongly disordered micropolar lattice made up of cubic block
units. This phononic lattice model supports both transverse and rotational degrees of freedom, hence its
disordered variant posseses an interesting problem as it can be used to model physically important systems
like beamlike microstructures. Different kinds of single site excitations (momentum or displacement) on the
two degrees of freedom are found to lead to different energy transports, both superdiffusive and subdiffusive.
We show that the energy spreading is facilitated both by the low-frequency extended waves and a set of
high-frequency modes located at the edge of the upper branch of the periodic case for any initial condition.
However, the second moment of the energy distribution strongly depends on the initial condition and it is slower
than the underlying one-dimensional harmonic lattice (with one degree of freedom). Finally, a limiting case of
the micropolar lattice is studied where Anderson localization is found to persist and no energy spreading takes
place.
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I. INTRODUCTION

Wave propagation in heterogeneous media has attracted
tremendous research interest in recent years. Families of one-
dimensional (1D) continuous and discrete models have been
extensively studied in this context [1–6], focusing on the
localization properties of both the normal modes of finite
systems, i.e., Anderson localization (AL) [7], and on the wave
propagation in infinite media. Although the theory of AL
was initially formulated for electronic systems, it has been
successfully extended and applied to many other systems.
Interestingly, recent experimental results on AL (see, e.g.,
Refs. [8–12]) have opened research frontiers and have revital-
ized the interest in studying AL both in quantum and classical
systems.

In the context of linear disordered 1D lattices, among
different systems, special attention has been given to the
tight-binding electron model, the linear Klein-Gordon (KG)
lattice [4,13], and the harmonic lattice [14,15]. The interest
in these models lies partly in the fact that they represent the
linear limit of seminal nonlinear lattices such as the discrete
nonlinear Schrödinger equation, quartic KG, and Fermi-Pasta-
Ulam-Tsingou lattices [2,16,17]. Even more, these fundamen-
tal models have been adopted to describe a variety of physical
systems and, more recently, in the context of metamaterials,
they have been extensively used as toy models for wave
phenomena [17,18].

A typical route to study the wave properties of these het-
erogenous lattices is to monitor the time evolution of initially
compact wave packets. For the tight-binding and the linear
KG models, the dynamics after the excitation of such an initial
condition is characterized by an initial phase of spreading,
followed by a phase of total confinement to its localization

length/volume. The width of the wave packet is of the order
of the maximum localization length [19]. On the other hand,
for the harmonic lattice, along with the localized portion of
the energy, there is always a propagating part due to the ex-
istence of extended modes at low frequencies. A quantitative
description of wave propagation in disordered 1D systems of
one degree of freedom (DOF) per lattice site was formulated
in Refs. [13–15] where wave-packet spreading was quantified
using both analytical and numerical methods. Moreover, many
variations of these 1D lattices have been studied extensively
in several works including all the regimes from the periodic
linear to the disordered nonlinear [12,20–27].

A natural extension to the above studies is to investigate the
corresponding behavior in disordered lattices with more than
one DOF. Few such studies exist in the literature, especially
as generalizations of the tight-binding model by assuming
a linear coupling between two (or more) 1D chains [28,29]
and illustrate how the coupling modifies the energy trans-
port properties. Recent experiments also revealed the role
of additional forces in disorder mechanical lattices [30]. On
the other hand, the wave dynamics of disordered harmonic
chains with two DOFs per site has merely been studied. Such
models are relevant to macroscopic mechanical lattices (e.g.,
granular phononic crystals, lego, and origami chains [31–35]),
where the coupling between the DOFs stems from either the
geometrical characteristics or from the material properties.

Here we present a thorough numerical study of a linear
disordered system made up of square block elements that
supports both translational and rotational waves [36–38].
The model we investigate is used in bodies with beamlike
microstructures to construct continuum models and in beam
lattices [36,39]. The corresponding equations of motion bear
close resemblance to other structures including 1D lattices of
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FIG. 1. (a) Schematic of the disorder phononic lattice with ran-
dom shear stiffness indicated by the different spring thicknesses
(colors). (b) Illustration of the transverse motion and the correspond-
ing shear stiffness k(1). (c) Illustration of rotational motion and the
corresponding bending stiffness k(2).

elastic cylinders [31] or spherical beads [32]. Our goal is to
unveil the role of the coupling between the DOFs regarding
the energy transport in the presence of strong disorder and
to identify the differences with the underlying 1D harmonic
lattice.

The rest of this paper is arranged as follows: In Sec. II, we
describe the model supporting both transverse and rotational

motion. The static properties for the periodic and disorder
cases are also discussed. In Sec. III, we investigate in detail
the dynamical behavior of the system in the presence of strong
disorder by initially exciting a single DOF at the center of the
lattice. In Sec. IV, we summarize and conclude the paper.

II. DISCRETE MODEL

We consider a phononic structure composed of discrete
block-spring elements such that the nth element can be
described by transverse and rotational DOFs as shown in
Fig. 1. The transverse displacements are in the y direction
while the rotation is about an axis perpendicular to the xy
plane. The blocks are coupled through a shear stiffness k(1)

n
and a bending one k(2)

n [see Figs. 1(b) and 1(c)]. In this paper,
we consider N identical cube blocks of mass m with edges of
length 2a and, consequently, a moment of inertia I = 2ma2/3.
Systems that could be potentially described by such a structure
include models in micro- and nanoscale films [40], granular
media [35], modeling of beam lattices [39], or the interaction
of finite size particles with predesigned connectors [41]. The
periodicity of the system is imposed by the distance h between
the center of each block as shown in Fig. 1, where un and φn,
respectively, represent the transverse and rotational motions of
the nth block from equilibrium. The corresponding momenta
are written as P(u)

n = mu̇n and P(φ)
n = Iφ̇n for the former and

latter motions, while (˙) denotes derivative with respect to
time. The total energy of the system, H , is given by the
following expression [37,42]:

H =
N∑

n=1

1

2
P(u)

n
2 + 1

2I
P(φ)

n
2 + 1

2
K (1)

n+1

[
(un+1 − un) + 3

2
(φn+1 + φn)

]2

+ 1

2
K (2)

n+1(φn+1 − φn)2. (1)

Here we have defined the constants K (1)
n = 2k(1)

n (2a)2/l4
d , K (2)

n = k(2)
n 2a2/l2, the lengths l = h − 2a and ld =

√
l2 + (2a)2 and,

for simplicity, we choose m = 1, l = 1 and thus h = 3. The equations of motion for the two DOFs are explicitly given by

ün = K (1)
n+1(un+1 − un) − K (1)

n (un − un−1) + 3K (1)
n+1

2
(φn+1 + φn) − 3K (1)

n

2
(φn + φn−1), (2)

Iφ̈n = 3K (1)
n

2
(un−1 − un)+ 3K (1)

n+1

2
(un − un+1)− 9K (1)

n+1

4
(φn+1+φn) − 9K (1)

n

4
(φn+φn−1)+K (2)

n+1(φn+1−φn)−K (2)
n (φn − φn−1).

(3)

We first study the periodic phononic crystal [31] with K (1)
n ≡ K (1) = 1 and K (2)

n ≡ K (2). In this case, we may look for Bloch-like
solutions of the form

Xn =
(

un(t )

φn(t )

)
= Xei�t−iQn, (4)

where X = [U,�] is the amplitude vector, � is the frequency, and Q is the Bloch wave number.
Inserting Eq. (4) into Eqs. (2) and (3), we obtain the following eigenvalue problem for the allowed frequencies SX = �2X,

where the resultant dynamical matrix is

S =
(

4 sin2 q −6i sin q cos q

6i sin q cos q 2
3 [9 cos2 q + 4K (2) sin2 q]

)
,

with q = Q/2. The corresponding expression for the eigenfrequencies is given by

�2
± = 1

2

{
4 sin2 q + 2

3

(
9

4
4 cos2 q + 4K (2) sin2 q

)
±

√[
4 sin2 q + 2

3

(
9

4
4 cos2 q + 4K (2) sin2 q

)]2

− 64K (2) p sin4 q

}
. (5)
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FIG. 2. (a) Dispersion relations of the lattice for K (1) = 1 and
K (2) = 1 (K (2) = 0) solid curves (dashed curves). (b) Corresponding
eigenfrequencies for a single strongly disordered lattice (W = 2)
with 〈K (1)〉 = 1 and K (2) = 1. The inset shows the mean value
(200 realizations) of 〈P〉 for each mode, and the standard devi-
ation (shaded area). The vertical dashed line denotes the index
where the quasiextended modes appear. (c) Representative profiles
of the eigenmodes of the disordered lattice with K (2) = 1 for the
three different cases indicated by the circle, square, and triangle in
(b). Here we show only profiles for un.

The dispersion relation of Eq. (5) for K (2) = 1 is depicted
by the solid curves plotted in Fig. 2(a). We directly observe
the appearance of two branches separated by a band gap and
terminated by a maximum allowed frequency. Since the two
DOFs are coupled, the modes are composed by a mixture of
transverse and rotational motion. Note that the constant K (2),
which depends on the bending stiffness, can be used as a
tuning parameter to change the form of the dispersion relation
and the dominant motion participating in each propagating
mode [31].

In the rest of this paper, we introduce disorder to the
system only through the shear spring stiffness’s K (1)

n [see
also Fig. 1(a)]. We choose this particular disorder aiming to
expose the role of each DOF and isolate its importance in the
energy transfer. The values of K (1)

n are taken from a uniform
probability distribution:

f
(
K (1)

n

) =
{

W −1, −W/2 < K (1)
n − 〈K (1)〉 < W/2,

0 otherwise.

The parameter W determines the width of the distribution
and thus the strength of the disorder. Figure 2(b) illustrates
the eigenfrequencies of a strongly disordered (W = 2) finite

chain of N = 103 blocks. The eigenmodes have been sorted
from lowest to highest frequency for increasing mode index
k. Due to the strength of the disorder, the middle band gap is
filled with modes while the maximum frequency of the system
is much bigger in comparison to the maximum frequency of
the periodic chain.

To further characterize the disordered finite lattice, for each
mode we calculate the participation number [43] P = 1/

∑
h2

n
where hn = Hn/H is the normalization of the site energy Hn. P
is an indicator of the localization of the mode and it becomes
P ≈ N for a mode with almost all sites excited, while P = 1
for a single site mode. The mean value of P taken for 200
disorder realizations is shown in the inset of Fig. 2(b). It
becomes clear that most of the modes are strongly localized
throughout the spectrum except at very low frequencies where
a rather small portion of the modes is extended. As such,
we may loosely describe the modes as either localized or
extended. Interestingly enough, we obtain a set of what we
coin as quasiextended modes around the cutoff frequency of
the upper branch of the periodic case. The appearance of
these modes is due to the particular implemented disorder,
which is only on the shear stiffness (see Appendix A). For
illustration, in Fig. 2(c) we show the normalized transverse
profiles of an extended mode [k = 50 (circle)] and of two
localized modes [k = 735 (triangle), and k = 1700 (square)].
The normalized rotational profile follows the same patterns.
As we will show below, both the low-frequency extended
modes and the quasiextended modes contribute to the transfer
of energy in the lattice.

III. DYNAMICS OF THE SYSTEM

To study the properties of energy transfer in the system,
we excite strongly disordered lattices using single site initial
conditions. Our results are averaged over an ensemble of 200
disorder realizations and, since we are interested in the effects
of strong disorder, we choose W = 2 such that K (1)

n ∈ (0, 2).
For all the time dependent simulations, each realization had
N = 105 lattice sites.

A. Momentum excitation

We first study the dynamics of the lattice under two differ-
ent initial momentum excitations,

P(φ)
N/2(0) =

√
I, or P(u)

N/2(0) = 1, (6)

i.e., initially exciting either the transverse or the rotational
momentum of the central site. Note that this choice of initial
conditions corresponds to a total energy of H = 0.5 for both
cases. Some typical time evolutions of the energy densities
are shown in Figs. 3(a) and 3(b) for an initial (a) rotational
and (b) transverse momentum excitation. We observe that, for
both cases, a large amount of energy remains localized in the
region of the initial excitation at the lattice’s center. This is
expected due to the fact that most of the modes are localized
and thus the implemented initial condition strongly excites
localized modes around the central site. This is also quantified
by the time evolution of the averaged participation number
〈P〉 shown in Figs. 3(c) and 3(d) for, respectively, the rota-
tional and transverse initial momentum excitations. In fact,
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FIG. 3. Results corresponding to rotational (left panels) and
transverse (right panels) initial momentum excitation. (a), (b) Time
evolution of the energy distribution for a representative disordered re-
alization with color bar in log10 scale. The horizontal axis represents
ñ = n − N/2. (c), (d) Time evolution of the average participation
number 〈P〉. (e), (f) Average energy per mode after projecting the
initial condition to the normal modes. (g), (h) Estimation of the
exponent β related to the time evolution of the average second
moment through 〈m2(t )〉 ∝ tβ . The horizontal dashed line indicates
the values (g) β = 0.75 and (h) β = 1.25. For (c)–(h), results have
been averaged over 200 disorder realizations, and the shaded area
denotes one standard deviation.

we observe that in both cases 〈P〉 saturates to a small number
compared to the total lattice size. However, comparing the two
final values we observe a significant difference between the
two cases as the transverse initial excitation [Fig. 3(d)] leads
to a larger 〈P〉.

This behavior can be understood by studying the pro-
jection of the initial conditions onto the normal modes

of a finite but large disordered lattice. For a given ini-
tial momentum excitation, we define the vector 	V (0) =
[u̇1(0), . . . , u̇N (0), φ̇1(0), . . . , φ̇N (0)]T whose projection on

the system’s normal modes is given by 	̇R = A−1 	V (0) with
matrix A having as columns the lattice eigenvectors. Using
this projection, we can calculate the energy given to each
normal mode as Ek = Ṙ2

k/2 where Ṙk are the elements of

projection vector 	̇R. Obviously, the system’s total energy is
H = ∑

Ek . Figures 3(e) and 3(f), although they appear to
have a similar form, exhibit important differences regarding
low index (k) modes (see also Appendix B). Since we sorted
the modes with increasing frequency, low indices correspond
to low-frequency extended modes. In fact, for the initial
rotational momentum [Fig. 3(e)], the low-frequency extended
modes (low index k) are the stronger excited ones with an
energy up to the order of 10−6. On the other hand, by initially
exciting the transverse momentum, the low-frequency modes
(low index k) as shown in Fig. 3(f) are strongly excited
acquiring energies up to 10−3. These orders-of-magnitudes
differences in energy of low-frequency extended modes ex-
plains the differences in 〈P〉 shown in Figs. 3(c) and 3(d).

Here we also observe major differences between the mi-
cropolar lattice and the well-studied 1D harmonic lattice
with disorder [5,14,15]. With an initial momentum excitation,
instead of exciting all modes with the same energy as in the
1D harmonic lattice, here we observe a strong excitation of
the low-frequency modes and another set of modes around
the cutoff frequency of the upper branch of the periodic case.
As we will see below, this has consequences to the energy
transport.

To quantify the energy spreading, we compute the av-
eraged second moment 〈m2〉 [14,26,44–47] of the energy
distributions, which for an initial excitation in the middle of
the lattice is given by m2 = ∑

n(n − N/2)2hn/H . Assuming
a polynomial dependence of the spreading, for sufficiently
long times, we may write 〈m2〉 ∝ tβ and the parameter β

is used to quantify the asymptotic behavior. The exponent
β is calculated by first smoothing the m2(t ) values of each
disorder realization through a locally weighted difference
algorithm [48,49]. The estimate of the rate of change

β = d log10〈m2(t )〉
d log10 t

(7)

is thus obtained numerically through a central finite difference
scheme as the values of m2(t ) are analyzed in log-log scale.

In Figs. 3(g) and 3(h), we observe that for both cases
β reaches an asymptotic value. In fact, β ≈ 0.75 (β ≈ 1.25)
for initial rotational (transverse) momentum excitations, cor-
responding to subdiffusive (superdiffusive) transport. These
values are quite different than the ones observed for the 1D
harmonic lattice where momentum excitation is always found
to be superdiffusive with β ≈ 1.5 [14,15,50]. To qualitatively
explain this difference, we first note that the exponent β has
been shown to depend mainly on two factors: (i) the char-
acteristics of extended modes (group velocity, localization
length as function of frequency, total number) and (ii) the
projection of the initial condition on the modes [14,15,50].
Regarding point (i), for both models, there is a set of extended
modes at � 
 1. Major differences are thus expected since
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the dispersion relation of Eq. (5) for the micropolar lattice at
low frequencies is quadratic with respect to the wave number
i.e., � ≈ 3

√
K (2)Q2 in contrast to the 1D harmonic lattice

where � ≈ Q. Furthermore, for the micropolar lattice, the
quasiextended modes at higher frequencies may influence the
energy spreading, as was shown for example in Refs. [14,51]
where additional extended modes were found either due to
symmetries or resonances. As far as point (ii) is concerned, the
results of Figs. 3(e) and 3(f) are substantially different from
those of the 1D harmonic lattice indicating that differences
between the two models are anticipated.

B. Displacement excitation

To further compare the behavior of the micropolar model
to that of the 1D harmonic lattice [13,14], we now study the
dynamics induced by the following initial conditions:

φ N
2

(0) = φ N
2
, or u N

2
(0) = u N

2
, (8)

which correspond to initial rotation or transverse displacement
of the central block. In this study, the values of φ N

2
and u N

2
are

chosen such that the total energy for each realization is again
H = 0.5.

Similar to Sec. III A, the evolution of the energy distribu-
tion [Figs. 4(a) and 4(b)] is characterized by a localized wave
packet at the region of the initial excitation in the center of
the lattice and by a portion which is propagating. However,
compared to the initial momenta excitations, here the energy
carried away from the central site is substantially smaller.
For both types of initial conditions, 〈P〉 attains an asymptotic
value of less than ten sites as shown in Figs. 4(c) and 4(d).
This behavior can be also understood using the projection
of the initial conditions to the normal modes of a large
but finite lattice. This is now done by projecting the vector
	U (0) = [u1(0), . . . , uN (0), φ1(0), . . . , φN (0)]T onto the nor-
mal modes to yield 	R = A−1 	U (0). In this case, the energy
of the kth normal mode is Ek = �2

kR2
k/2, with �k being the

kth eigenfrequency. Again the system’s total energy is H =∑
Ek . The outcome of this projection is shown in Figs. 4(e)

and 4(f) for the initial rotation and transverse displacement,
respectively. The results are similar to those of Figs. 3(e)
and 3(f) with suppressed contributions of the low-frequency
modes leading to a small value of 〈P〉 during the evolution.

Furthermore, we also calculated the exponent β for the
energy propagation resulting from these two different initial
excitations and the results are shown in Figs. 4(g) and 4(h).
In a similar manner as in the 1D disordered harmonic lattice
case, single site displacement excitation leads to subdiffusive
behavior. However, our findings show that although the initial
rotation excitations leads to the same value (β ≈ 0.5) as in
the 1D harmonic lattice, the initial transverse displacement
features extremely slow energy transport with β ≈ 0.25. The
discrepancy between the two models is anticipated as it was
discussed at the end of Sec. III A. However, our results for
the displacement excitations of the micropolar lattice strongly
suggest that the energy transport is indeed mediated by both
the low-frequency and the quasiextended modes. To be more
precise, we compare the results of Fig. 3(e) with Fig. 4(e)
and notice that in the latter lower frequency modes are less
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FIG. 4. Similar to Fig. 3 but for displacement excitation(s). The
horizontal dashed lines in (g) and (h), respectively, indicate β = 0.5
and β = 0.25.

excited, leading to a smaller value of β (β ≈ 0.75 for the
former and β ≈ 0.5 for the latter). In the same spirit, by
comparing Fig. 3(e) with Fig. 4(f), the main difference lies
in the quasiextended modes which are suppressed in the latter
case, leading to β ≈ 0.25 instead of 0.75, thus reducing the
amount of energy allocated to either the low-frequency ex-
tended modes or the quasiextended modes results in a reduced
β, suggesting that both contribute to the energy spreading.

Note that the result of initial transverse momentum, cor-
responding to Fig. 3(f) is not compared with the other three
since, in that case, the low-frequency modes are highly ex-
cited. We thus conclude that the complete picture is compre-
hended by casting one eye on the low frequency extended and
the other onto the quasiextended ones.
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C. Energy contributions in the micropolar lattice

The participation number measures the localization of the
total energy and the exponent β is a measure of how fast
the energy is spreading, however, none of them carries any
information of what amount of this energy is attributed to the
rotational or the transverse DOFs. We can have an indication
of how much energy is attributed to each of the two DOFs by
decomposing the total energy of the system into two parts, i.e.,
H = HR + HT as follows:

HR =
N∑

n=1

1

2I
P(φ)

n
2+ 9

8
K (1)

n+1(φn+1+φn)2+ 1

2
K (2)

n+1(φn+1−φn)2

+ 3

4
K (1)

n+1(φn+1 + φn)(un+1 − un), (9)

HT =
N∑

n=1

1

2
P(u)

n
2 + 1

2
K (1)

n+1(un+1 − un)2

+ 3

4
K (1)

n+1(φn+1 + φn)(un+1 − un), (10)

separating the rotational HR and transverse HT energy con-
tributions. Note that the coupling potential energy, which is
described by the last terms in both Eqs. (9) and (10), is
equally shared between the two contributions. It is interesting
to determine the nature of the lattice’s energy in two different
regions: (i) around the initially excited central block and
(ii) sufficiently far away from the region of localization.
For the central area, we calculate the energy using Eqs. (9)
and (10) but taking the sum for n ∈ [N/2 − 100, N/2 + 100]
to obtain H center

R and H center
T . Conversely, we also define the en-

ergies at the edges of the energy distribution H edge
R and H edge

T
by summing Eqs. (9) and (10) for n /∈ [N/2 − 5000, N/2 +
5000].

Before discussing the dynamical behavior of the system
in these two distinct regions, it is relevant to show how the
two different energy contributions are shared between the
modes of a finite disordered lattice. The result is shown in
Fig. 5(a) where the red (blue) curve depicts the transverse
(rotational) energy contribution. As a general observation, we
mention that the modes with lower k values are dominated
by transverse motion, while the high frequency ones are
dominated by rotational motion. As it is shown in Fig. 5(b),
for both initial conditions concerning the rotational DOFs
[P(φ)

n (0) = √
Iδn,N/2 and φn(0) = φN/2δn,N/2], the central, lo-

calized part of the energy distribution is dominated by the
rotational motion with almost the same ratios. This is so as
the majority of the localized modes are dominated by rotation
[see Figs. 5(a) and 2(b)]. By initially exciting the transverse
DOF, we end up with the two energy contributions in the
central part shown in Fig. 5(c). We find that the central part of
the energy distribution for the initial displacement excitation
[un(0) = uN/2δn,N/2] is still dominated by rotation as indicated
by the solid curve in Fig. 5(c). Interestingly, for the case
of initial transverse momentum excitation [P(u)

n (0) = δn,N/2],
the energy contribution of each motion in the central part
is inverted with respect to all other cases. This is due to
the fact that this initial condition excites more strongly the
low-frequency modes [Fig. 3(f)] which according to Fig. 5(a)
are dominated by transverse motion.
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FIG. 5. (a) Averaged normalized energy contributions HR and
HT of the normal modes for finite lattices of 1000 sites. (b) Time
evolution of normalized averaged rotational (H center

R ) and transverse
(H center

T ) energy contributions near the excitation region. Solid bolder
(dashed lighter shaded) curves show rotational displacement (mo-
mentum) initial excitations. (c) Same as (b) but for transverse
displacement (momentum) initial excitations. (d) Time evolution
of averaged normalized energy contributions H edge

R and H edge
T , for

transverse momentum excitations. Averaged values are over 200
disorder realizations and one standard deviation is indicated by the
lightly shaded regions.

Let us now turn our attention to the energy distribution far
away from the central site following the propagating tails that
are responsible for the energy transfer. The corresponding re-
sults for the initial transverse momentum excitation is shown
in Fig. 5(d). After the arrival of the propagating front at the
chosen sites n = N/2 ± 5000, it is readily seen that the energy
at the edges is completely carried by the transverse motion.
We have confirmed the same quantitative result for all types of
initial conditions. This behavior can be comprehended since
we have shown that energy is carried away mostly from the
low-frequency extended modes hence as shown in Fig. 5(a)
these modes (corresponding to small k) are almost completely
constituted by transverse motion and so is the energy at the
edges.

D. The special case of K (2) = 0

Now, we focus on a special case of the system, i.e., in the
limit of vanishing bending stiffness K (2). Note that such a case
is very relevant to situations where the bending stiffness is
so small that it may be neglected, see for example Ref. [35].
Then the corresponding dispersion relation of the periodic
system [dashed lines in Fig. 2(a)] is substantially altered. In
particular, instead of two propagating bands, it consists of a
zero-frequency nonpropagative band and a dispersive band
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FIG. 6. Time evolution of the energy density after an initial
transverse momentum excitation Pu

N/2(0) = 1 with K (2) = 0, where
ñ = n − N/2. The inset depicts the evolution of the exponent, β in
the relation 〈m2(t )〉 ∝ tβ averaging over 200 disorder realizations,
which is shown to be zero indicating no spreading. The horizontal
dashed line indicates β = 0.

emerging after a cutoff frequency � = 2. The zero-frequency
branch is made possible due to a counterbalance between the
shear and bending forces [31].

To study the energy transfer for this special case of
K (2) = 0, we have performed simulations for the different
single-site initial conditions considered before and a charac-
teristic example is shown in Fig. 6. There it is readily seen that
the energy remains localized around the center and in addition
there is no energy transfer to the rest of the lattice. This is
also confirmed by the time dependence of the exponent β in
〈m2(t )〉 ∝ tβ , which becomes zero (see inset of Fig. 6) thus
signaling no energy spreading.

Trying to explain the absence of energy transport we
found (by solving the corresponding eigenvalue problem nu-
merically) that the lower branch of the system’s frequency
spectrum, in the limit case of K (2) = 0, still remains at zero
frequency even in the presence of strong disorder due to a
counterbalance of the transverse and rotational motions. As
such, in this limit, the micropolar lattice is similar to a 1D KG
model, i.e., featuring a single propagating band emerging after
a lower cut-off frequency and thus the system is expected to
exhibit AL.

IV. CONCLUSIONS

We have demonstrated how energy is transported in a
strongly disordered micropolar lattice subject to shear forces
and bending moments when the shear stiffness is chosen
randomly. The phononic crystal investigated was composed
of connected blocks possessing two degrees of freedom cor-
responding to transverse and rotational motion. The dynamics
of the energy density, under different single-site initial excita-
tions was characterized into two different regions: a localized
energy distribution around the initially excited site and a prop-
agating part at the edges of the lattice. The energy localization
for each initial condition as quantified by the participation
number P was found to acquire a small (compared to the
lattice length) asymptotic value.

Depending on which motion or momentum we initially
excited, energy spreading was found to be either superdif-
fusive or subdiffusive, as quantified by the energy’s second

moment m2. Compared to the underlying 1D harmonic case,
energy transport is altered, and in general the micropolar lat-
tice featured slower spreading. The modified energy transport
characteristics are attributed to the differences of the disper-
sion relation between the two models in the low-frequency
limit, to the weight by which the modes of the system are
excited depending on the initial condition and also to the
existence of additional quasiextended modes in the micropolar
lattice.

Furthermore, by measuring the parts of the total energy
related to the rotational and transverse motions, we showed
that the propagating part is always carried by translation
for any choice of initial condition. On the other hand, the
localized part was found to be either dominated by rotation
or translation depending on the initial conditions. Finally, the
limiting case of vanishing bending force was found to be
similar to a linear 1D KG lattice which exhibits AL and thus
no energy spreading.

Our results not only revealed interesting properties of
1D disordered micropolar lattices with bending forces, but
also raised new questions for future investigations. A direct
generalization of our results is to study the effect of other
kinds of disorder, i.e., disorder in the masses or in different
combinations of the stiffnesses. Furthermore, the appearance
of the extended modes at the edge of the upper band is
worthy of its own investigation in relation to other known
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FIG. 7. (a) A full view of the inset depicted in Fig. 2(b) and
its own inset shows P against sorted linear eigenmodes for a single
disorder realization. The vertical dashed line denotes the index where
the quasiextended modes appear. (b) The profile of a characteristic
quasiextended mode k = 1194 showing negligible displacements
un in comparison to φn. The inset shows a zoom of the region
enclosed by a black rectangle with consecutive rotations having
similar amplitudes and opposite signs (φn+1 ≈ −φn).
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models where anomalous localization appears either due to
correlations or symmetry.
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APPENDIX A: QUASIEXTENDED MODES

Here we focus our attention on the quasiextended modes
appearing close to the cutoff frequency of the upper band of
the periodic case (see Fig. 2). As depicted in Figs. 7(a), the
participation number 〈P〉 features a peak around k ≈ 1200
which corresponds to the cutoff frequency of the upper branch
of the periodic system [see Figs. 2(a) and 2(b)]. Note that in
many cases we found that these modes may be as extended
and have P values which are of the same order as the low
index modes (small k) as indicated by the inset in Fig. 7(a)
corresponding to a single realization.

To further understand this phenomenon, we now consider
a characteristic profile of such a mode depicted in Fig. 7(b).
We find that (i) these modes consist almost solely of rotational
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FIG. 8. (a) Average (over 200 disorder realizations) energy per
mode after projecting the initial condition to the normal modes.
(b) A zoom of panel (a) for small k. The lightly shaded red and blue
regions indicate one standard deviation on either side of the mean
value.
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FIG. 9. (a) Figures 4(b) and 4(e) combined together. (b) A zoom
of some small k values in (a). The lightly shaded red and blue regions
indicate one standard deviation on either side of the mean value
obtained over 200 disorder realizations.

motion (the contribution of the transverse DOFs is negligible,
i.e., un ≈ 0) and (ii) the profile of the modes consists of var-
ious regions with consecutive rotations of similar amplitude
and opposite signs (φn+1 ≈ −φn), as shown by the zoom in
the inset of Fig. 7(b). Using these two observations and the
functional form of the Hamiltonian Eq. (1), it is noticeable that
for these modes, effectively only the bending potential term
analogous to K (2) is present. But since there is no disorder
in K (2), these modes are extended reminiscent of the periodic
lattice.

APPENDIX B: EIGENMODE PROJECTIONS

Here we take a closer look at the projections of the initial
momentum excitations onto the normal modes especially in
the low-frequency regime. The results of Figs. 3(b) and 3(e)
are combined together for comparison in Fig. 8(a) while a
zoom in the low frequencies is shown in Fig. 8(b). From
the latter, we observe that for k → 0 the energy difference
between the two types of excitations is as much as 10 orders
of magnitude. This explains the larger values of participa-
tion number 〈P〉 shown in Figs. 3(c) and 3(d). Similarly for
the initial displacement excitations, the results are shown in
Figs. 9(a) and 9(b). Although here the two curves are more
similar again, differences in the low-frequency regime show
that the initial transverse excitation (red curve) will acquire a
larger 〈P〉 as it is found by comparing Figs. 4(c) and 4(d).

054201-8



WAVE PROPAGATION IN A STRONGLY DISORDERED … PHYSICAL REVIEW B 102, 054201 (2020)

[1] F. J. Dyson, Phys. Rev. 92, 1331 (1953).
[2] The Fermi-Pasta-Ulam Problem: A Status Report, edited by

G. Galavotti (Springer-Verlag, Berlin, 2008).
[3] J. D. Bodyfelt, T. V. Laptyeva, G. Gligoric, D. O. Krimer,

C. Skokos, and S. Flach, Int. J. Bifurcation Chaos 21, 2107
(2011).

[4] F. M. Izrailev, A. A. Krokhin, and N. M. Marakov, Phys. Rep.
512, 125 (2012).

[5] M. V. Ivanchenko, T. V. Laptyeva, and S. Flach, Phys. Rev. B
89, 060301(R) (2014).

[6] A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of
Lattice Dynamics in the Harmonic Approximation (Academic
Press, New York, 1963).

[7] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[8] T. Schwartz, G. Bartal, S. Fishman, and M. Segev,

Nature (London) 446, 52 (2007).
[9] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan,

D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect,
Nature (London) 453, 891 (2008).

[10] G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M.
Zaccanti, G. Modugno, M. Modugno, and M. Inguscio,
Nature (London) 453, 895 (2008).

[11] Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti,
D. N. Christodoulides, and Y. Silberberg, Phys. Rev. Lett. 100,
013906 (2008).

[12] E. Kim, A. J. Martínez, S. E. Phenisee, P. G. Kevrekidis, M. A.
Porter, and J. Yang, Nat. Commun. 9, 640 (2018).

[13] H. Matsuda and K. Ishii, Prog. Theor. Phys. Suppl. 45, 56
(1970); K. Ishii, ibid. 53, 77 (1973).

[14] P. K. Datta and K. Kundu, Phys. Rev. B 51, 6287 (1995).
[15] S. Lepri, R. Schilling, and S. Aubry, Phys. Rev. E 82, 056602

(2010).
[16] P. G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation

(Springer-Verlag, Berlin, 2009).
[17] Nonlinearities in Periodic Structures and Metamaterials, edited

by C. Denz, S. Flach, and Y. Kivshar (Springer-Verlag, Berlin,
2010).

[18] Acoustic Metamaterials and Phononic Crystals, edited by P. A.
Deymier (Springer, New York, 2013).

[19] I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction
to the Theory of Disordered Systems (John Wiley and Sons,
New York, 1988).

[20] L. Ponson, N. Boechler, Y. M. Lai, M. A. Porter, P. G.
Kevrekidis, and C. Daraio, Phys. Rev. E 82, 021301
(2010).

[21] M. Manjunath, A. P. Awasthi, and P. H. Geubelle, Phys. Rev. E
85, 031308 (2012).

[22] A. J. Martínez, P. G. Kevrekidis, and M. A. Porter, Phys. Rev. E
93, 022902 (2016).

[23] V. Achilleos, G. Theocharis, and C. Skokos, Phys. Rev. E 93,
022903 (2016).

[24] M. Przedborski, S. Sen, and T. A. Harroun, J. Stat. Mech. (2017)
123204.

[25] R. K. Shrivastava and S. Luding, Nonlin. Process. Geophys. 24,
435 (2017).

[26] A. Ngapasare, G. Theocharis, O. Richoux, C. Skokos, and V.
Achilleos, Phys. Rev. E 99, 032211 (2019).

[27] B. Many Manda, B. Senyange, and C. Skokos, Phys. Rev. E
101, 032206 (2020).

[28] H. Y. Xie, V. E. Kravtsov, and M. Muller, Phys. Rev. B 86,
014205 (2012).

[29] X. Yu and S. Flach, Phys. Rev. E 90, 032910 (2014).
[30] J. C. Angel, J. C. T. Guzman, and A. D. de Anda, Sci. Rep. 9,

3572 (2019).
[31] H. Pichard, A. Duclos, J.-P. Groby, V. Tournat, and V. E. Gusev,

Phys. Rev. E 89, 013201 (2014).
[32] F. Allein, V. Tournat, V. E. Gusev, and G. Theocharis,

Extreme Mech. Lett. 12, 65 (2016).
[33] H. Yasuda, T. Tachi, M. Lee, and J. Yang, Nat. Commun. 8, 962

(2017); H. Yasuda and J. Yang, J. Int. Assoc. Shell. Spat. Struct.
58, 4 (2017).

[34] B. Deng, P. Wang, Q. He, V. Tournat, and K. Bertoldi,
Nat. Commun. 9, 3410 (2018).

[35] F. Allein, V. Tournat, V. Gusev, and G. Theocharis, Phys. Rev.
App. 13, 024023 (2020).

[36] A. A. Vasiliev, A. E. Miroshnichenko, and M. Ruzzene,
Mech. Res. Commun. 37, 225 (2010).

[37] P. A. Deymier, K. Runge, N. Swinteck, and K. Muralidharan,
C. R. Meca. 343, 700 (2015).

[38] M. Ostoja-Starzewski, Appl. Mech. Rev. 55, 35 (2002).
[39] A. E. Noor, Appl. Mech. Rev. 41, 285 (1988).
[40] C. L. Randow, G. L. Gray, and F. Costanzo, Int. J. Solids Struct.

43, 1253 (2006).
[41] K. Bertoldi, V. Vitelli, J. Christensen, and M. van Hecke,

Nat. Rev. Mater. 2, 17066 (2017).
[42] A. Suiker, A. Metrikine, and R. de Borst, Int. J. Solids Struct.

38, 1563 (2001).
[43] S. Flach, in Nonlinear Optical and Atomic Systems, Lecture

Notes in Mathematics, edited by C. Besse and J. C. Garreau
(Springer, Switzerland, 2015), Chap. 1, Vol. 2146.

[44] S. Flach, D. O. Krimer, and C. Skokos, Phys. Rev. Lett. 102,
024101 (2009).

[45] C. Skokos, I. Gkolias, and S. Flach, Phys. Rev. Lett. 111,
064101 (2013).

[46] B. Senyange, B. M. Manda, and C. Skokos, Phys. Rev. E 98,
052229 (2018).

[47] M. Hillebrand, G. Kalosakas, A. Schwellnus, and C. Skokos,
Phys. Rev. E 99, 022213 (2019).

[48] W. S. Cleveland, Am. Stat. 35, 54 (1981).
[49] W. S. Cleveland and S. J. Devlin, J. Am. Stat. Assoc. 83, 596

(1988).
[50] M. Wagner, G. Zavt, J. Vazquez-Marquez, G. Viliani, W.

Frizzera, O. Pilla, and M. Montagna, Philos. Mag. B 65, 273
(1992).

[51] P. L. Krapivsky and J. M. Luck, J. Stat. Mech. (2011) P02031.
[52] https://www.chpc.ac.za.

054201-9

https://doi.org/10.1103/PhysRev.92.1331
https://doi.org/10.1142/S0218127411029665
https://doi.org/10.1016/j.physrep.2011.11.002
https://doi.org/10.1103/PhysRevB.89.060301
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1038/nature05623
https://doi.org/10.1038/nature07000
https://doi.org/10.1038/nature07071
https://doi.org/10.1103/PhysRevLett.100.013906
https://doi.org/10.1038/s41467-018-03015-3
https://doi.org/10.1143/PTPS.45.56
https://doi.org/10.1143/PTPS.53.77
https://doi.org/10.1103/PhysRevB.51.6287
https://doi.org/10.1103/PhysRevE.82.056602
https://doi.org/10.1103/PhysRevE.82.021301
https://doi.org/10.1103/PhysRevE.85.031308
https://doi.org/10.1103/PhysRevE.93.022902
https://doi.org/10.1103/PhysRevE.93.022903
https://doi.org/10.1088/1742-5468/aa9a62
https://doi.org/10.5194/npg-24-435-2017
https://doi.org/10.1103/PhysRevE.99.032211
https://doi.org/10.1103/PhysRevE.101.032206
https://doi.org/10.1103/PhysRevB.86.014205
https://doi.org/10.1103/PhysRevE.90.032910
https://doi.org/10.1038/s41598-019-39623-2
https://doi.org/10.1103/PhysRevE.89.013201
https://doi.org/10.1016/j.eml.2016.08.001
https://doi.org/10.1038/s41467-017-00670-w
https://doi.org/10.1038/s41467-018-05908-9
https://doi.org/10.1103/PhysRevApplied.13.024023
https://doi.org/10.1016/j.mechrescom.2009.11.010
https://doi.org/10.1016/j.crme.2015.07.003
https://doi.org/10.1115/1.1432990
https://doi.org/10.1115/1.3151907
https://doi.org/10.1016/j.ijsolstr.2005.03.064
https://doi.org/10.1038/natrevmats.2017.66
https://doi.org/10.1016/S0020-7683(00)00104-9
https://doi.org/10.1103/PhysRevLett.102.024101
https://doi.org/10.1103/PhysRevLett.111.064101
https://doi.org/10.1103/PhysRevE.98.052229
https://doi.org/10.1103/PhysRevE.99.022213
https://doi.org/10.2307/2683591
https://doi.org/10.1080/01621459.1988.10478639
https://doi.org/10.1080/13642819208217902
https://doi.org/10.1088/1742-5468/2011/02/P02031
https://www.chpc.ac.za

